SISTEM INFORMASI PENJADWALAN PEMELIHARAAN DAN KALIBRASI ALAT KESEHATAN

Mulyono¹, Prima Widyawati Wardaningsih², Agung Satrio Nugroho³

1,2,3 Program Studi DIII Teknik Elektromedik STIKES Widya Husada Semarang
Email: mulyonopjk@gmail.com

ABSTRAK

Dalam instansi Rumah Sakit terdapat banyak sekali alat kesehatan yang dipakai untuk melanyani pasien. Sedangkan jumlah teknisi elektromedis sangat terbatas. sehingga perlu adanya suatu sistem yang bisa mengetaui prioritas alat mana saja yang perlu segera dilakukan inspeksi dan pemeliharaan preventif maupun kalibrasi. Untuk penentuan jumlah inspeksi yang perlu dilakukan didasarkan dari nilai Equipment Management. Pada penelitian ini dibuat sistem informasi penjadwalan pemeliharaan dan kalibrasi berbasis web dengan bahasa pemprograman PHP dengan pengolahan basis datanya menggunakan MySql. Untuk menggambarkan interaksi user dengan sistem dibuat menggunakan use case sedangkan pemodelan alir aktifitas user dalam sistem dibuat dalam bentuk actifity diagram kemudian interaksi user dengan sistem berdasarkan urutan waktunya digambarkan menggunakan sequen diagram. Sistem informasi yang dibuat untuk mengetahui jadwal pemeliharaan dan kalibrasi disajikan informasinya secara mudah dan cepat yang bisa disajikan secara real time.

Kata kunci: Penjadwalan pemeliharaan, Equipment Management, Penjadwalan kalibrasi

Pendahuluan

Menurut peraturan menteri kesehatan no. 54 tahun 2015 pasal 8 ayat 1 bahwa pengujian dan atau kalibrasi alat kesehatan dilakukan secara berkala paling sedikit 1 (kali) dalam 1 (satu) tahun.

Sedangkan dari peraturan menteri kesehatan no. 65 tahun 2016 tentang standar pelayanan Elektromedis bahwa cakupan pelayanan Elektromedis di butir ke tiga bahwa tugas elektromedis adalah disampaikan membuat perencanaan sistem penjadwalan pemeliharaan, penyusunan protap terkait pengelolaan peralatan elektromedik, mulai dari siklus akuisisi atau penerimaan sampai siklus utilisasi atau pemanfaatan peralatan elektromedik serta pengujian atau kalibrasi peralatan elektromedik. Dalam pembuatan jadwal pemeliharaan dalam "Pedoman Pengelolaan Alat Kesehatan 2015" bahwa banyaknya inspeksi dan pemeliharaan preventif didasarkan dari nilai Equipment Management.

Jumlah tenaga elektromedis pada Rumah Sakit di Semarang dan sekitarnya tempat praktek kerja lapangan tahun 2018 mahasiswa d3 elektromedik STIKES Widya Husada Semarang terdapat banyak sekali alat kesehatan yang dipakai untuk melanyani pasien.

Sedangkan jumlah teknisi elektromedis sangat terbatas, sehingga perlu adanya suatu tool atau alat atau sistem yang bisa mengetaui prioritas alat mana saja yang perlu segera dilakukan proses pemeliharaan maupun kalibrasi sehingga menjadi lebih terencana dan efektif.

Metodologi

A. Analisa Kebutuhan Sistem

Rentang waktu inspeksi dan pemeliharaan peralatan kesehatan didasarkan pada kriteria yang direkomendasikan pabrikan seperti tingkat risiko dan pengalaman dari rumah sakit. Semua peralatan termasuk dalam program ini diperiksa dan diuji sebelum penggunaan awal dan pada interval yang ditetapkan, biasanya disebut sebagai perawatan pencegahan (PM).

Jadwal pemeliharaan peralatan kesehatan yang sistematis menjamin peralatan tersebut aman digunakan dan memperoleh pemanfaatan maksimal dengan biaya yang wajar. Keuntungan lain adalah meminimalkan risiko klinis dan fisik.

Setiap peralatan kesehatan mempunyai klasifikasi risiko berdasarkan:

- a) Fungsi peralatan kesehatan : penghantar energi, pemantau pasien, atau peralatan untuk kenyamanan pasien.
- b) Risiko fisik.
- c) Preventif pemeliharaan.
- d) Riwayat insiden.

Tabel 1

Kelompok berdasarkan Fungsi Peralatan Kesehatan (FUNGSI)

KATEGORI	NILAI	JENIS	DEFINISI	CONTOH
	10	Penunjang Kehidupank Terapi dengan radiasi.	Peralatan yang digunakan menunjang kehidupank peralatan untuk terapi dengan radiasi.	Defibrillator, ventilator, pacemaker, infant incubator
Peralatan untuk penyembuhan Peralatan diagnostik Peralatan	9	Peralatan bedah dan Perawatan Intensif.	Peralatan untuk penyembuhan tetapi bukan sebagai penunjang kehidupan	Electrosurgical unit, laser
	8	Terapi fisik dan pengobatan	Peralatan yang digunakan untuk mengobati pasien	Dialysis machine, infusion pump, traction unit, diathermy
	7	Monitoring kegiatan bedah dan perawatan intensifk system radiologi	Memonitor kegiatan bedah dan perawatan intensifk Sistem radiologi.	EEG machine, non- invasive blood pressure monitor, x-ray generator
ulagriostik -	radiologi 6 Monitoring kondisi fisik Peralatan yang tidak rutin dan unit ultrasonografi digunakan di perawatan intensif. untuk diagnostik. 5 Analisa di laboratorium Peralatan yang digunakan di	adult scale, tympanic thermometer, ultrasound unit		
	5	Analisa di laboratorium	Peralatan yang digunakan di laboratorium klinik untuk mendiagnosa spesimen.	blood gas analyzer, clinical chemistry analyzer, cell counter
Peralatan Analitis	4	Aksesori alat Laboratorium.	Peralatan yang digunakan untuk mempersiapkan analisa specimen.	shaker, centrifuge, incubator, microtome
	3	Komputer and related	Peralatan yang digunakan untuk menyimpan, mencetak, mengambil atau mendistribusikan data.	computer, ticket printer, QC system
	2	Yang berhubungan dengan pasien.	Peralatan yang berhubungan dengan perawatan, tapi tidak secara langsung.	Xllray view box, sterilizer, chair lift
Lain·lain -	1	Tidak berhubungan dengan pasienk peralatan pengujian	Peralatan yang tidak berhubungan dengan pasien, peralatan dapur, UPS.	ECG simulator, office equipment,

Tabel 2 Kelompok berdasarkan Risiko Fisik dan Penggunaan Klinis (RISIKO)

KATEGORI	NILAI	JENIS	DEFINISI
Menyebabkan kematian pasien	5	Kegagalan peralatan kesehatan dapat menyebabkan kematian pasien.	Defibrillator, ventilator, anesthesia
Menyebabkan pasien atau operator peralatan luka	4	Kegagalan peralatan kesehatan tidak menyebabkan kematian tetapi luka.	Hypo/hyperthermia unit, laser, electrosurgical unit

KATEGORI	NILAI	JENIS	DEFINISI
Menyebabkan Terapi yang tidak tepat dan kesalahan diagnose	3	Kegagalan peralatan kesehatan menyebabkan kesalahan diagnose atau penangan yang tidak tepat.	ECG machine, blood gas analyzer, centrifuge
Menyebabkan Risiko minimal	2	Kegagalan peralatan yang menyebabkan penanganan buruk kepada pasien dan mempengaruhi keamanan pasien dan operator.	Gel warmer, heat sealer, suction pump
Tidak menyebabkan risiko yang signifikan	1	Kegagalan yang tidak menyebabkan penanganan pada pasien dan tidak mempengaruhi keamanan pasien dan operator.	Exam light, computer terminal, video printer

Tabel 3 Kelompok berdasarkan Persyaratan Pemeliharaan (PEMELIHARAAN)

KATEGORI	NILAI	JENIS	DEFINISI
Pemeliharaan perlu perhatian khusus	5	Perangkat yang sebagian besar berupa mekanis, pneumatik, atau fluida.	Dialysis machine, ventilator, anesthesia machine, x-ray table
Pemeliharaan di atas ratallrata	4	Peralatan kesehatan Devices that have mechanical, pneumatic, or fluidic components, but are primarily electronic in nature	Infant incubator, blood warmer, laser, portable x-ray system
Pemeliharaan rata⊮rata	3	Peralatan kesehatan yang membutuhkan verifikasi kinerja dan pengujian keamanan, yang didukung rangkaian kelistrikan.	Defibrillator, infusion pump, electrosurgical unit, traction unit
Pemeliharaan di bawah ratallrata	2	Peralatan kesehatan yang membutuhkan sedikit pengujian kinerja.	Lab microscope, scales, general medical device
Pemeliharaan minimal	1	Peralatan kesehatan yang hanya membutuhkan inspeksi secara visual atau pengamatan.	Exam light, computer terminal, video camera

Tabel 4 Kelompok berdasarkan Riwayat Insiden Peralatan Kesehatan (INSIDEN)

KATEGORI	NILAI	DEFINISI
Signifikan	+2	Lebih dari 1 kali insiden setiap 6 bulan
Di atas rata-rata	+1	1 kali insiden setiap 6–9 bulan
Rata-rata	0	1 kali insiden setiap 9–18 bulan
Minimal	·1	1 kali insiden setiap 18–30 bulan
Tidak bermakna/signifikan	-2	Kurang dari 1 kali insiden pada kurun waktu 30 bulan

Dari empat kelompok diatas dihitung interval pemeliharaan preventif yang didasarkan pada EM (Equipment Management) :

EM = FUNGSI + RISIKO + PEMELIHARAAN + INSIDEN

Frekuensi Inspeksi:

A = Annual (Dilakukan 1 tahun sekali)

S = Semi-annual (Dilakukan 6 bulan sekali)

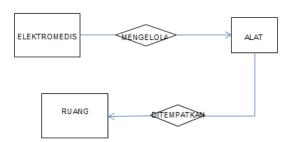
T = Three-yearly (Dilakukan 4 bulan sekali)

Nilai EM < 12 diinspeksi sesuai keperluan

Nilai EM 12 - 14 dijadwalkan diinspeksi setidaknya setiap setahun sekali.

Nilai EM 15 – 19 dijadwalkan diinspeksi setidaknya setiap enam bulan sekali.

Nilai EM ≥ 20 dijadwalkan diinspeksi setidaknya setiap empat bulan sekali.

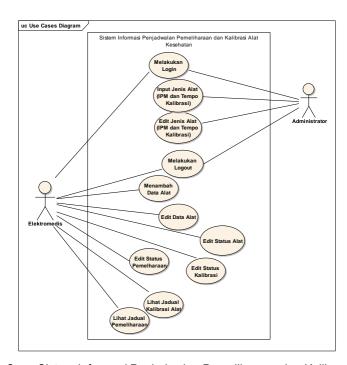

Kebutuhan fungsional dari sistem yang dibuat sebagai berikut:

- a) Sistem harus mampu melakukan input jadwal pemeliharaan dan kalibrasi tiap alat.
- Sistem harus mampu melihat jadual pemeliharaan dan kalibrasi

c) Sistem harus mampu melakukan update jadwal pemeliharaan dan kalibrasi

B. Perencanaan basis data

Dalam kasus perancangan basis data sistem informasi penjadwalan pemeliharaan, kalibrasi alat kesehatan terdapat minimal tiga buah entitas yaitu elektromedis, alat dan ruang seperti gambar berikut:

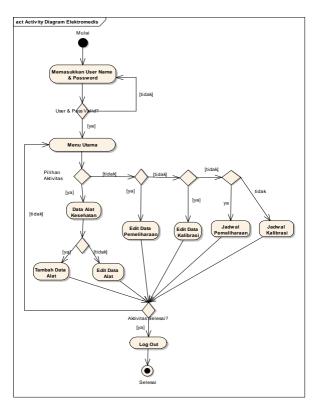


Gambar 1 Skema konseptual basis data

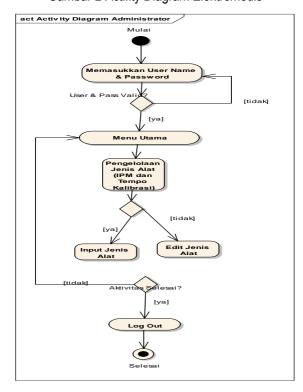
C. Perencanaan Aplikasi

1. Perancangan Use Case

Diagram interaksi antara user dengan sistem. Use case bekerja dengan cara mendeskripsi tipikal interaksinya melalui sebuah cerita bagaimana sebuah sistem tersebut dipakai.



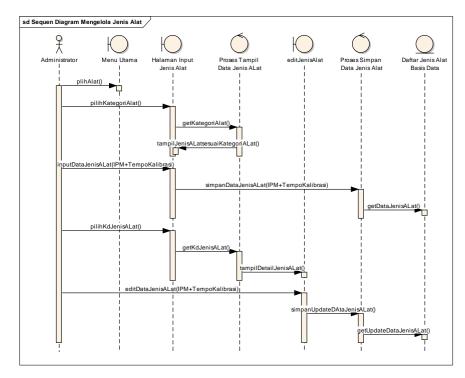
Gambar 2. Use Case Use Case Sistem Informasi Penjadwalan Pemeliharaan dan Kalibrasi Alat Kesehatan


2. Activity Diagram

Activity diagrams menggambarkan berbagai alir aktivitas dalam sistem penjadwalan pemeliharaan dan kalibasi alat kesehatan yang sedang dirancang, yang

menjelaskan awal dari alir, pilihan-pilihan yang mungkin ada dan akhir dari alir. *Activity diagram* juga dapat menggambarkan proses paralel yang mungkin terjadi pada beberapa eksekusi.

Gambar 2 Actifity Diagram Elektromedis



Gambar 3 Actifity Diagram Administrator

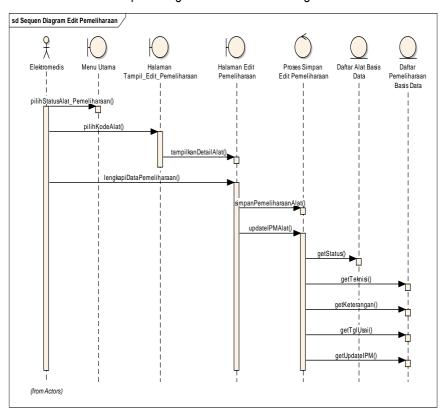
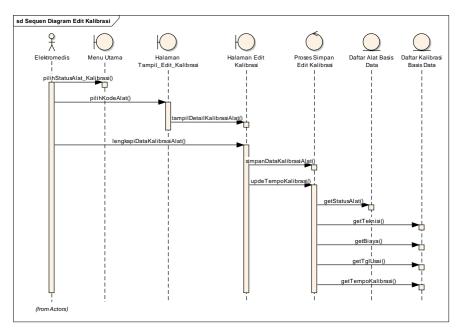
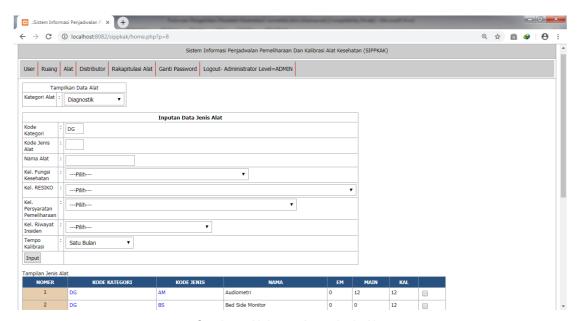

Sequence Diagram

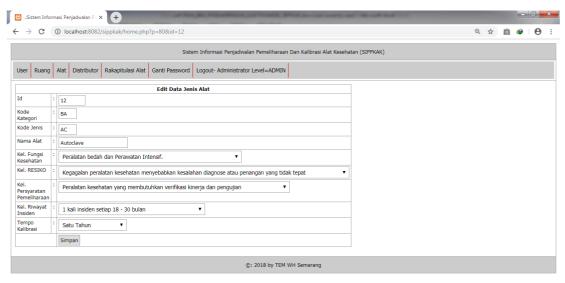
Diagram yang digunakan untuk menggambarkan interaksi sistem dengan user sesuai dengan urutan


waktu. Digunakan juga untuk menggambarkan skenario atau urutan langkah yang dilakukan sebagai respon dari sebuah kejadian untuk menghasilkan output.

Gambar 4 Sequen Diagram Administrator Mengelola Jenis Alat

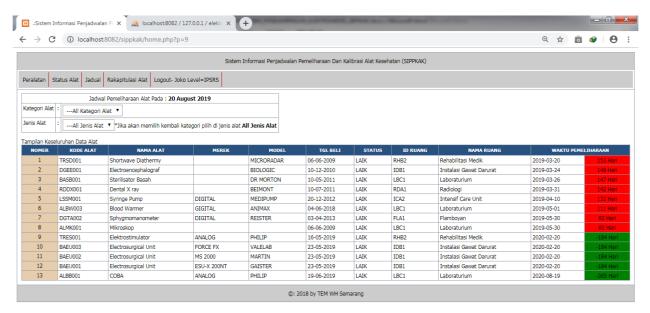


Gambar 5 Sequen Diagram edit Pemeliharaan Alat



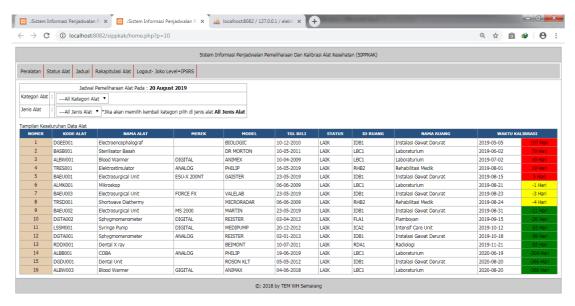
Gambar 6 Sequen Diagram Edit Kalibrasi

D. Perancangan User Interface untuk memudahkan bagi user dalam
 Perancangan sistem user interface dimaksudkan menggunakan sistem yang dibuat.


Gambar 7 Halaman Input Jenis Alat

Gambar 8 Halaman Edit Data Jenis Alat

Jadual pemeliharaan tiap alat bisa dilihat oleh Elektromedis dengan memilih menu Jadwal, Pemeliharaan yang tampilannya seperti pada gambar 9. Apabila tanggal pemeliharaan lebih dari enam hari


maka backgrounnya berwarna hijau, apabila antara 6 sampai 0 hari backgrounnya warna kuning sedangkan tanggal pemeliharaannya yang melebihi tanggal backgrounnya berwarna merah.

Gambar 9 Halaman Jadwal Pemeliharaan

Jadual kalibrasi tiap alat bisa dilihat oleh Elektromedis dengan memilih menu *Jadwal, Kalibrasi* yang tampilannya seperti pada gambar 10. Apabila tanggal kalibrasi lebih dari enam hari maka

backgrounnya berwarna hijau, apabila antara 6 sampai 0 hari backgrounnya warna kuning sedangkan tanggal kalibrasinya yang melebihi tanggal backgrounnya berwarna merah.

Gambar 10 Halaman Jadwal Kalibrasi

HASIL DAN PEMBAHASAN

1. Pengujian White Box

Dari coding diatas didapatkan grafik alir sebagai berikut:

Contoh coding program yang dipakai untuk pengujian ini adalah coding pada waktu mengubah status alat:

```
if ($kode != "" && $nama!="" )
             //cari di tabel alat apakah ada data kode yang ditambah baru
1
             $query = mysql_query("SELECT * FROM `jenis` WHERE `kd` = '$kd' and kode='$kode' ");
                      $jmlrek = mysql_num_rows($query);
             2
                      if_($jmlrek=='0') {
                      $query2 = mysql_query("INSERT INTO `jenis` (`kd`,`kode`
    , nama`,fungsi,resiko,pemeliharaan,insiden, em`, main`, kal`)VALUES ('$kd', '$kode',
                                                                                              3
   '$nama','$fungsi','$resiko','$pelihara','$insiden','$em','$main','$kal')");
                                         echo "Data $kd$kode Berhasil Diinput";
                       4
                                } else {
                                         echo "Data $kd$kode Sudah ada";
                                                                                  5
             lelse {
     6
             echo "Data Kode dan Nama Belum Diisi Lengkap";
                                                                1
                                                    2
                                                               6
                                                   3
                                                    5
                                                                  7
```

Gambar 11 Path Mengubah Status Alat

Pengukuran kuantitatif terhadap kompleksitas logis dari diagram alir diatas adalah

$$V(G) = E-N+2$$

Dimana:

E = jumlah edge grafik alir yang ditandakan dengan gambar panah

N = jumlah simpul grafik alir yang ditandakan dengan gambar lingkaran Maka V(G) = 9 - 7 + 2 = 4

Dari nilai kompleksitas logis yang didapatkan 3, maka basis set yang dihasilkan dari diagram alir penggolongan tingkat kemiripan adalah sebagai berikut:

2. Pengujian Black Box

Hasil dari pengujian sistem informasi pada waktu dijalankan hasilnya sebagai berikut:.

Tabel 5 Pengujian Black Box pada Bagian Elektromedis

Input / Event	Hasil yang diharapkan di halaman bagian	Sukses	
Input / Event		Ya	Tidak
Membuka halaman login	Tampil halaman login	√	
Membuka halaman menu	Tampil halaman menu utama dari aplkasi	$\sqrt{}$	
Memilih menu peralatan, input alat	Tampil halaman input alat	$\sqrt{}$	
Memilih menu peralatan edit alat	Tampil halaman edit alat	$\sqrt{}$	
Memilih menu status alat, edit status	Tampil halaman edit status alat	$\sqrt{}$	
Memilih menu status alat, pemeliharaan	Tampil halaman edit data pemeliharaan alat	$\sqrt{}$	
Memilih menu status alat, perbaikan	Tampil halaman edit data perbaikan alat	$\sqrt{}$	
Memilih menu status alat, kalibrasi	Tampil halaman edit data kalibrasi alat	$\sqrt{}$	
Memilih menu jadwal, pemeliharaan	Tampil halaman jadwal pemeliharaan alat	$\sqrt{}$	
Memilih menu jadwal, kalibrasi	Tampil halaman jadwal kalibrasi alat		

Tabel 6Pengujian Black Box pada Bagian Administrator

Innut / Event	Hasil yang diharapkan di halaman bagian	Sukses	
Input / Event		Ya	Tidak
Membuka halaman login	Tampil halaman login	$\sqrt{}$	
Membuka halaman menu	Tampil halaman menu utama dari aplkasi	$\sqrt{}$	
Memilih menu alat, jenis	Tampil halaman tambah edit jenis alat	√	

Simpulan dan Saran

Simpulan

Setelah dilakukan pengujian didapatkan hasil bahwa sistem informasi yang dibuat dapat menyajikan informasi berupa jadwal pemeliharaan preventif beserta jadwal kalibrasi dari alat medis menjadi lebih terencana dan efektif yang diperlukan dalam mendukung tugas elektromedis dalam pengelolaan alat medis.

Saran

Untuk pengembangan sistem informasi penjadwalan kedepan perlu disertakan manajemen tenaga elektromedis yang ada di instansi layanan kesehatan masing-masing.

Daftar Pustaka

Akt MBA Jogiyanto HM, Analisis dan DesainSistem Informasi: pendekatan terstruktur teoridan

- praktekaplikasi bisnis. Yogyakarta: Andi, 2005.
- Abdul Kadir, *Konsep dan Tuntunan Praktis Basis Data*. Yogyakarta: Andi, 2000.
- Abdul Kadir, *Pengenalan Sistem Informasi Andi.* Yogyakarta: Abdul Kadir, 2003.
- Bunafit Nugroho, *PHP dan MYSQL Dengan Editor DreamweaverMX*. Yogyakarta: Andi, 2004.
- M.Kes Dr. Kuntjoro Adi Purjanto and MARS drg. Anwarrul Amin, *Pedoman Pengelolaan Peralatan Kesehatan*. Jakarta: Direktorat Bina Pelayanan Penunjang Medik Dan Sarana Kesehatan Direktorat Jenderal Bina Upaya Kesehatan, 2015
- Robert A. Leitch dan K. Roscoe Davis, *Sistem Informasi*. Jakarta: PT. Prenhallindo, 2001.
- WHO, Medical Equipment *Program maintenance Overview.*, 2011.